RSR13, a synthetic allosteric modifier of hemoglobin, improves myocardial recovery following hypothermic cardiopulmonary bypass.
نویسندگان
چکیده
BACKGROUND During hypothermic blood cardioplegia, oxygen delivery to myocytes is minimal with ineffective anaerobic metabolism predominating. RSR13, 2-[4-[[(3,5-dimethylanilino) carbonyl]methyl]phenoxy]-2-methylpropionic acid, a synthetic allosteric modifier of hemoglobin (Hb), increases release of oxygen from Hb, increasing oxygen availability to hypoxic tissues, and reverses the hypothermia-dependent increase in Hb oxygen affinity. We studied recovery of myocardial mechanical and metabolic function and examined myocardial morphology after cardioplegia, comparing RSR13 (1.75 mmol/L)-supplemented blood (RSR13-BC) to standard blood cardioplegia (BC). METHODS AND RESULTS Twelve dogs underwent 15 minutes of 37 degrees C global ischemia on cardiopulmonary bypass, followed by 75 minutes of hypothermic cardioplegia (13 degrees C) with either BC (n=6) or RSR13-BC (n=6). There were no differences in baseline function between groups. Cardiac function was assessed after 30 minutes of 37 degrees C reperfusion (BC versus RSR13-BC, respectively) by measuring: % return to normal sinus rhythm (0/100%), % of baseline+dP/dt (33.7+/-1.7/76.3+/-1.9), % of baseline-dP/dt (26.6+/-2.0/81.1+/-1.6), stroke volume (3.5+/-0.5/7.1+/-0.9 mL), cardiac output (340+/-20/880+/-40.3 mL/min), and LVEDP (11.3+/-2.2/0. 3+/-2.9 mm Hg). Postischemic oxidative and metabolic parameters including myocardial lactate, pyruvate, ATP content, and percent water content also were determined. Histological analysis demonstrated preservation of endothelial and myocyte morphology in hearts receiving RSR13-BC compared with BC. CONCLUSIONS These results indicate that in the setting of hypothermic cardiopulmonary bypass, RSR13 improves recovery of myocardial mechanical and metabolic function compared with standard hypothermic BC. Findings from this study suggest that RSR13-BC, by decreasing hemoglobin oxygen affinity, improves oxidative metabolism and preserves cellular morphology, resulting in significantly improved contractile recovery on reperfusion.
منابع مشابه
Pharmacological correction of hypothermic P(50) shift does not alter outcome from focal cerebral ischemia in rats.
Hypothermia decreases the arterial PO(2) at which hemoglobin is 50% saturated (P(50)), increasing hemoglobin O(2)-binding affinity. We used RSR13, a synthetic allosteric modifier of hemoglobin that increases P(50), to study the role of altered hemoglobin O(2)-binding affinity in mild hypothermic neuroprotection. RSR13 (150 mg/kg iv) restored P(50) to normothermic values. Rats underwent 70 min o...
متن کاملRSR13, a synthetic modifier of hemoglobin-oxygen affinity, enhances the recovery of stunned myocardium in anesthetized dogs.
RSR13 (2-[4-[[(3, 5-dimethylanilino)carbonyl]methyl]phenoxyl]-2-methylpropr ionic acid) is a synthetic allosteric modifier of oxygen (O2)-hemoglobin affinity that increases O2 release to tissue by allosterically stabilizing deoxyhemoglobin. We tested the hypothesis that RSR13 enhances the functional recovery of stunned myocardium in barbiturate-anesthetized dogs instrumented for measurement of ...
متن کاملPreservation of canine myocardial high-energy phosphates during low-flow ischemia with modification of hemoglobin-oxygen affinity.
Conventional approaches for the treatment of myocardial ischemia increase coronary blood flow or reduce myocardial demand. To determine whether a rightward shift in the hemoglobin-oxygen saturation curve would reduce the metabolic and contractile effects of a myocardial oxygen-supply imbalance, we studied the impact of a potent synthetic allosteric modifier of hemoglobin-oxygen affinity, a 2-[4...
متن کاملEffects of a synthetic allosteric modifier of hemoglobin oxygen affinity on outcome from global cerebral ischemia in the rat.
BACKGROUND AND PURPOSE Neuronal injury results from an insufficient supply of oxygen to the brain. This experiment examined whether a pharmacologically induced rightward shift of the partial pressure of oxygen at which 50% of hemoglobin is saturated (P50) would improve outcome from either incomplete and/or near-complete forebrain ischemia-induced hypoxia in the rat. METHODS For incomplete isc...
متن کاملMAGNETIC RESONANCE SPECTROSCOPY Effects of a pharmacologically-induced shift of hemoglobin-oxygen dissociation on myocardial energetics during ischemia in patients with coronary artery disease
Background. Conventional strategies to treat myocardial ischemia include interventions that reduce oxygen demand and/or increase myocardial blood flow. Animal experiments suggest that right-shifting the hemoglobin-oxygen dissociation curve may also attenuate the metabolic consequences of myocardial ischemia. We evaluated whether exercise-induced myocardial ischemia can be alleviated in subjects...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 100 19 Suppl شماره
صفحات -
تاریخ انتشار 1999